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2Institute for Particle Physics Phenomenology, University of Durham, Durham, DH1 3LE, U.K.

3 Fermilab, Batavia, IL 60510, USA
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We present the cross-section for the threshold production of the Higgs boson at hadron-colliders at
next-to-next-to-next-to-leading order (N3LO) in perturbative QCD. We present an analytic expres-
sion for the partonic cross-section at threshold and the impact of these corrections on the numerical
estimates for the hadronic cross-section at the LHC. With this result we achieve a major mile-
stone towards a complete evaluation of the cross-section at N3LO which will reduce the theoretical
uncertainty in the determination of the strengths of the Higgs boson interactions.
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High precision theoretical predictions for the produc-
tion rate of the Higgs boson are crucial in the study of the
recently discovered particle from the ATLAS and CMS
collaborations [1] and for inferring the existence of phe-
nomena beyond the Standard Model. With the collection
of further data at the upgraded LHC, the theoretical un-
certainty for the gluon-fusion cross-section will become
soon dominant. It is thus highly timely to improve the
theoretical accuracy of the cross-section predictions.

The quest for accurate Higgs boson cross-sections has
been long-standing and it is paralleled with major ad-
vances in perturbative QCD. State-of-the-art calcula-
tions of the gluon-fusion cross-section (for a review, see
Ref. [2] and references therein) comprise next-to-leading-
order (NLO) QCD corrections in the full Standard-Model
theory, next-to-next-to-leading order (NNLO) QCD cor-
rections as an expansion in inverse powers of the top-
quark mass 1/mt, two-loop electroweak corrections and
mixed QCD/electroweak corrections. To improve upon
the present accuracy, the most significant correction is
expected from the N3LO QCD contribution in the lead-
ing order of the 1/mt expansion.

Universal factorization of radiative corrections due to
soft emissions, as well as knowledge of the three-loop
splitting functions [3], have made possible the derivation
of logarithmic contributions to the cross-section beyond
NNLO [4]. However, further progress in determining the
N3LO correction can only be achieved by direct evalua-
tion of the Feynman diagrams at this order.

Recently, there was rapid progress in this direction.
The required three-loop matrix-elements have been com-
puted in Ref. [5]. The partonic cross-sections for the pro-
duction of a Higgs boson in association with three par-
tons was computed in Ref. [6], while the two-loop matrix-

elements for the production of a Higgs boson in associ-
ation with a single parton and the corresponding two-
loop soft current were computed in Ref. [7] and Ref. [8].
Corrections due to one-loop amplitudes for a Higgs bo-
son in association with a single parton were evaluated in
Refs. [9], and counter-terms due to ultraviolet [11, 12]
and initial-state collinear divergencies were computed in
Refs. [10]. The N3LO Wilson coefficient and the renor-
malization constants of the operator in the effective the-
ory where the top quark is integrated out have been com-
puted in Refs. [11]. Although all these contributions are
separately divergent in four dimensions, a finite cross-
section can be obtained by combining them with the re-
maining one-loop matrix elements for the production of
the Higgs boson in association with two partons.

The purpose of this Letter is to complete the computa-
tion of all matrix-elements integrated over loop momenta
and phase-space which are required at N3LO in the limit
of Higgs production at threshold. We present the fully
analytic result for the first term in the threshold expan-
sion of the gluon-fusion cross-section at N3LO, and we
use this result to estimate the impact of N3LO correc-
tions to the inclusive Higgs production cross-section at
threshold. Our result is the first calculation of a hadron
collider observable at this order in perturbative QCD.

The Higgs production cross-section takes the form

σ =
∑

ij

∫

dx1 dx2 fi(x1) fj(x2) σ̂ij(m
2
H , x1 x2 s) , (1)

where σ̂ij are the partonic cross-sections for producing
a Higgs boson from partons i and j, fi(x1) and fj(x2)
are the corresponding parton distribution functions, and
m2

H and s denote the mass of the Higgs boson and the
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hadronic centre-of-mass energy, respectively. We work in
an effective theory where the top quark has been inte-
grated out, and the Higgs boson couples directly to the
gluons via the effective operator

Leff = −
1

4v
C(µ2)H Ga

µν G
µν
a , (2)

where v ≃ 246 GeV is the vacuum expectation value of
the Higgs field and C(µ2) is the Wilson coefficient, given
as a perturbative expansion in the MS-renormalized
strong coupling constant αs ≡ αs(µ

2) evaluated at the
scale µ2. Up to three loops, we have [11]

C(µ2) = −
αs

3 π

{

1 +
11

4

αs

π
(3)

+
(αs

π

)2
[

19

16
Lt +

2777

288
+NF

(

1

3
Lt −

67

96

)

]

+
(αs

π

)3
[

897943

9216
ζ3 +

209

64
L2
t +

1733

288
Lt −

2892659

41472

+NF

(

−
110779

13824
ζ3 +

23

32
L2
t +

55

54
Lt +

40291

20736

)

+N2
F

(

−
1

18
L2
t +

77

1728
Lt −

6865

31104

)

]

+O(α4
s)

}

,

with Lt = log(µ2/m2
t ) and NF the number of active light

flavours.
The partonic cross-section itself admits the perturba-

tive expansion

σ̂ij(m
2
H , ŝ) =

π C(µ2)2

v2 V 2

∞
∑

k=0

(αs

π

)k

η
(k)
ij (z) , (4)

with z ≡ m2
H/ŝ and V = N2 − 1, where N denotes the

number of colours. The coefficients η
(k)
ij (z) are known

explicitly through NNLO in perturbative QCD [13].
If all the partons emitted in the final state are soft,

we can approximate the partonic cross-sections by their
threshold expansion,

η
(k)
ij (z) = δig δjg η̂

(k)(z) +O(1 − z)0 . (5)

Note that the first term in the threshold expansion,
the so-called soft-virtual term, only receives contribu-
tions from the gluon-gluon initial state. Soft-virtual

terms are linear combinations of a δ function and plus-
distributions,

∫ 1

0

dz

[

g(z)

1− z

]

+

f(z) ≡

∫ 1

0

dz
g(z)

1− z
[f(z)− f(1)] . (6)

Through NNLO, we have [13, 14]

η̂(0)(z) = δ(1 − z) , (7)

η̂(1)(z) = 2CA ζ2 δ(1 − z) + 4CA

[

log(1− z)

1− z

]

+

, (8)

η̂(2)(z) = δ(1 − z)

{

C2
A

(

67

18
ζ2 −

55

12
ζ3 −

1

8
ζ4 +

93

16

)

+NF

[

CF

(

ζ3 −
67

48

)

− CA

(

5

9
ζ2 +

1

6
ζ3 +

5

3

)]

}

+

[

1

1− z

]

+

[

C2
A

(

11

3
ζ2 +

39

2
ζ3 −

101

27

)

(9)

+NF CA

(

14

27
−

2

3
ζ2

)

]

+

[

log(1− z)

1− z

]

+

[

C2
A

(

67

9
− 10 ζ2

)

−
10

9
CA NF

]

+

[

log2(1− z)

1− z

]

+

(

2

3
CA NF −

11

3
C2

A

)

+

[

log3(1− z)

1− z

]

+

8C2
A .

In this expression ζn denotes the Riemann zeta function,
CA = N and CF = V/(2N). For simplicity renormaliza-
tion and factorisation scales are set equal to the Higgs
mass, µR = µF = mH .

The main result of this Letter is the next term in the
perturbative expansion, N3LO, of the cross-section for
the threshold production of a Higgs boson. All ingredi-
ents necessary to compute η̂(3)(z) have recently become
available. Each of these contributions is individually di-
vergent. Adding up all the contributions, and including
the counter-terms necessary to remove the ultraviolet and
infrared divergences, all the poles in the dimensional reg-
ulator ǫ cancel, leaving a finite remainder in the Laurent
expansion, which, for µR = µF = mH , is given by,

η̂(3)(z) = δ(1− z)

{

C3
A

(

−
2003

48
ζ6 +

413

6
ζ23 −

7579

144
ζ5 +

979

24
ζ2 ζ3 −

15257

864
ζ4 −

819

16
ζ3 +

16151

1296
ζ2 +

215131

5184

)

(10)

+NF

[

C2
A

(

869

72
ζ5 −

125

12
ζ3 ζ2 +

2629

432
ζ4 +

1231

216
ζ3 −

70

81
ζ2 −

98059

5184

)
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+ CA CF

(

5

2
ζ5 + 3ζ3ζ2 +

11

72
ζ4 +

13

2
ζ3 −

71

36
ζ2 −

63991

5184

)

+ C2
F

(

−5ζ5 +
37

12
ζ3 +

19

18

)

]

+N2
F

[

CA

(

−
19

36
ζ4 +

43

108
ζ3 −

133

324
ζ2 +

2515

1728

)

+ CF

(

−
1

36
ζ4 −

7

6
ζ3 −

23

72
ζ2 +

4481

2592

)

]}

+

[

1

1− z

]

+

{

C3
A

(

186 ζ5 −
725

6
ζ3 ζ2 +

253

24
ζ4 +

8941

108
ζ3 +

8563

324
ζ2 −

297029

23328

)

+N2
F CA

(

5

27
ζ3 +

10

27
ζ2 −

58

729

)

+NF

[

C2
A

(

−
17

12
ζ4 −

475

36
ζ3 −

2173

324
ζ2 +

31313

11664

)

+ CA CF

(

−
1

2
ζ4 −

19

18
ζ3 −

1

2
ζ2 +

1711

864

)

]}

+

[

log(1− z)

1− z

]

+

{

C3
A

(

−77ζ4 −
352

3
ζ3 −

152

3
ζ2 +

30569

648

)

+N2
F CA

(

−
4

9
ζ2 +

25

81

)

+NF

[

C2
A

(

46

3
ζ3 +

94

9
ζ2 −

4211

324

)

+ CA CF

(

6 ζ3 −
63

8

)

]}

+

[

log2(1− z)

1− z

]

+

{

C3
A

(

181 ζ3 +
187

3
ζ2 −

1051

27

)

+NF

[

C2
A

(

−
34

3
ζ2 +

457

54

)

+
1

2
CA CF

]

−
10

27
N2

F CA

}

+

[

log3(1− z)

1− z

]

+

{

C3
A

(

−56 ζ2 +
925

27

)

−
164

27
NF C2

A +
4

27
N2

F CA

}

+

[

log4(1− z)

1− z

]

+

(

20

9
NF C2

A −
110

9
C3

A

)

+

[

log5(1 − z)

1− z

]

+

8C3
A .

Equation (10) is the main result of this Letter. While the
terms proportional to plus-distributions were previously
known [4], we complete the computation of η̂(3)(z) by the
term proportional to δ(1−z), which includes in particular
all the three-loop virtual corrections.
Before discussing some of the numerical implications of

Eq. (10), we have to make a comment about the validity
of the threshold approximation. As we will see shortly,
the plus-distribution terms show a complicated pattern of
strong cancellations at LHC energies; the formally most
singular terms cancel against sums of less singular ones.
Therefore, exploiting the formal singularity hierarchy of
the terms in the partonic cross-section does not guaran-
tee a fast-converging expansion for the hadronic cross-
section. Furthermore, the definition of threshold correc-
tions in the integral of Eq. (1) is ambiguous, because the
limit of the partonic cross-section at threshold is not af-
fected if we multiply the integrand by a function g such
that limz→1 g(z) = 1,

∫

dx1 dx2 [fi(x1) fj(x2)zg(z)] lim
z→1

[

σ̂ij(s, z)

zg(z)

]

. (11)

It is obvious that Eq. (11) has the same formal accuracy
in the threshold expansion, provided that limz→1 g(z) =
1. As we will see in the following, this ambiguity has a
substantial numerical implication, and thus presents an
obstacle for obtaining precise predictions. We note how-
ever that by including in the future further corrections in

the threshold expansion, this ambiguity will be reduced.
Bearing this warning in mind, we present some of the

numerical implications of our result for g(z) = 1. For
N = 3 and NF = 5, the coefficients of the distributions
in Eq. (10) take the numerical values

η̂(3)(z) ≃ δ(1− z) 1124.308887 . . . (→ 5.1%)

+

[

1

1− z

]

+

1466.478272 . . . (→ −5.85%)

−

[

log(1 − z)

1− z

]

+

6062.086738 . . . (→ −22.88%)

+

[

log2(1− z)

1− z

]

+

7116.015302 . . . (→ −52.45%)

−

[

log3(1− z)

1− z

]

+

1824.362531 . . . (→ −39.90%)

−

[

log4(1− z)

1− z

]

+

230 (→ 20.01%)

+

[

log5(1− z)

1− z

]

+

216 . (→ 93.72%)

In parentheses we indicate the correction that each
term induces to the hadronic cross-section normalized to
the leading order cross-section at a center of mass en-
ergy of 14 TeV. The ratio is evaluated with the MSTW
NNLO [15] parton densities and αs at scales µR = µF =
mH in the numerator and denominator. We also fac-
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FIG. 1: Percent change from the ihixs cross-section at
NNLO σNNLO to the N3LO cross-section estimate at thresh-
old for

√

s = 7, 8, 13 and 14 TeV respectively, as a function of
the scale µ = µR = µF .

torize the Wilson coefficient at all orders, as in Eq. (4),
in both numerator and denominator, and it cancels in
the ratio. We find that the pure N3LO threshold cor-
rection is approximately −2.27% of the leading order.
We observe that the δ-term which we computed for the
first time in this publication is as large as the sum of
the plus-distribution terms which were already known
in the literature and cancels almost completely against
them for µR = µF = mH . We note, however, that by
choosing a different functional form for the function g(z)
in Eq. (11), the conclusion can be substantially different.
For example, by choosing g(z) = 1, z, z2, 1/z we find that
the threshold correction to the hadronic cross-section at
N3LO normalized to the leading order cross-section is
−2.27%, 8.19%, 30.16%, 7.73% respectively.
In Fig. 1 we present the percentual change of the N3LO

threshold corrections to an existing Higgs cross-section
estimate based on previously known corrections (NNLO,
electroweak, quark-mass effects) in ihixs [2] and the set-
tings of Ref. [16]. The new N3LO correction displayed in
this plot includes the full logarithmic dependence on the
renormalization and factorization scales, as they can be
predicted from renormalization group and DGLAP evo-
lution, the Wilson coefficient at N3LO and the threshold
limit of Eq. (10). The function g(z) of Eq. (11) is fixed
to unity. σNNLO and δσN3LO are defined after expanding
the product of the Wilson coefficient and the partonic
cross-sections in αs. We conclude that N3LO corrections
are important for a high precision estimation of the Higgs
cross-section.
Our result of the N3LO cross-section at threshold

demonstrates that it is, in principle, possible to calcu-
late all loop and phase-space integrals required for N3LO
QCD corrections for hadron collider processes, albeit in a
kinematic limit. With this publication, we open up a new
era in precision phenomenology which promises the com-
putation of full N3LO corrections for Higgs production
and other processes in the future.

Acknowledgements: We are grateful to A. La-
zopoulos and S. Bühler for their help with ihixs.
Research supported by the Swiss National Science
Foundation (SNF) under contracts 200021-143781 and
200020-149517, the European Commission through the
ERC grants “IterQCD”, “LHCTheory” (291377) and
“MC@NNLO” (340983) as well as the FP7 Marie Curie
Initial Training Network “LHCPhenoNet” (PITN-GA-
2010-264564), and by the U.S. Department of Energy
under contract no. DE-AC02-07CH11359.

[1] G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 716,
1 (2012); S. Chatrchyan et al. [CMS Collaboration], Phys.
Lett. B 716, 30 (2012).

[2] C. Anastasiou, S. Buehler, F. Herzog and A. Lazopoulos,
JHEP 1112, 058 (2011).

[3] S. Moch, J. A. M. Vermaseren and A. Vogt, Nucl. Phys.
B 688, 101 (2004); Nucl. Phys. B 691, 129 (2004).

[4] S. Moch and A. Vogt, Phys. Lett. B 631, 48 (2005).
[5] P.A. Baikov, K.G. Chetyrkin, A.V. Smirnov,

V.A. Smirnov, M. Steinhauser, Phys. Rev. Lett.
102, 212002 (2009); T. Gehrmann, E. W. N. Glover,
T. Huber, N. Ikizlerli, C. Studerus, JHEP 1006, 094
(2010).

[6] C. Anastasiou, C. Duhr, F. Dulat, B. Mistlberger, JHEP
1307, 003 (2013).

[7] T. Gehrmann, M. Jaquier, E. W. N. Glover and A. Kouk-
outsakis, JHEP 1202, 056 (2012).

[8] C. Duhr and T. Gehrmann, Phys. Lett. B 727, 452
(2013); Y. Li and H. X. Zhu, JHEP 1311, 080 (2013).

[9] C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and
B. Mistlberger, JHEP 1312, 088 (2013); W. B. Kilgore,
[arXiv:1312.1296].

[10] C. Anastasiou, S. Bühler, C. Duhr and F. Herzog, JHEP
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